Courtesy of PDIFaster results, complete coverage, ease of testing and information on cage alignment are just some of the advantages of the new Thermal Integrity Profiler 

By Lisa Kopochinski

Living up to its sophisticated name, the Thermal Integrity Profiler (TIP) is embodying a new, temperature-based technology for concrete foundation integrity testing.

The latest development of Pile Dynamics, Inc. (PDI), in partnership with Foundation & Geotechnical Engingeering (FGE), the TIP offers a unique approach in that it uses measurements of the heat generated by curing cement to evaluate the integrity of cast-in-place concrete foundations. (Regions that are colder than expected are indicative of necks or inclusions – a cross-sectional area smaller than intended for the shaft. Regions that are warmer than anticipated indicate bulges – an excess of concrete in a particular location.)

“The heat generated by curing concrete had never before been used to assess the quality and shape of cast-in-place concrete foundations,” explained Gina Beim, P.E., a senior consulting engineer and marketing director with PDI. “Measurements may be taken by a probe inserted into access tubes pre-installed in the shaft or by Thermal Wire® cables attached to the reinforcing cage.”

Joint venture
The TIP technology was first developed prior to 2004 at the University of South Florida when an initial patent was filed. Then, in 2009, a joint effort between PDI and FGE was formed to incorporate this technology into the TIP instrument. In 2011, the TIP was taken to market.

“PDI and FGE realized the potential of the technology and how much it would benefit the industry,” said Beim. “The industry was lacking a test capable of evaluating the shape and quality of the entire foundation element without length and diameter challenges and without skipping the important region outside the reinforcement cage.”

The TIP can test all the way to the bottom of the shaft, and the temperatures measured reflect what is happening along the entire cross section both inside and outside the reinforcement cage.

“You can evaluate the entire shaft, lengthwise and cross-section-wise,” she explained. “In addition, the TIP reveals the alignment of the reinforcing cage and the concrete cover, which neither cross hole sonic logging (CSL) nor pulse echo testing – also known as pile integrity testing (PIT) – can do. The TIP can also be performed much sooner than CSL or PIT, since those two need a fully cured shaft. TIP tests during curing – within 12 to 48 hours of shaft installation. I’m not saying that pulse echo and CSL do not have value. Pulse echo does not require pre-planning and CSL has years of tradition and does a very good job in the part of the cross section that it tests (inside the reinforcing cage), but TIP gives something extra.”

Engineers benefit
As for those who benefit most from the TIP, Beim says it is project owners and contractors. Since the TIP provides earlier testing results, construction can proceed sooner, which pleases everyone involved.

“Foundation engineers benefit from a fuller picture of the foundation shaft, which includes the area outside the reinforcement cage and the cage alignment. And the engineer performing the test benefits from increased productivity.”


Sign Up

To receive our e-newsletter in your inbox, please provide your e-mail below.

About Us

Piling Canada is the premier national voice for the Canadian deep foundation construction industry. Each issue is dedicated to providing readers with current and informative editorial, including project updates, company profiles, technological advancements, safety news, environmental information, HR advice, pertinent legal issues and more.